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Abstract 

Photons and electrons interacting with axion domain walls are con- 

sidered in a simple model. A topological mass term for the photon and 

a parity-violating mass term for the electron arise naturally on &on 

domain walls. The quantization of topological mass and the interac- 

tion between domain walls and magnetic monopoles, along with other 

features, are discussed. 
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As a solution for the strong CP problem [1,2,3], axions have been studied and 

shown to have interesting properties [4]. It has been suggested that superconduct- 

ing axion stings [5] can be formed around the GUT phase transtion time in the 

early universe. These cosmic strings will be connected by the domain walls [S] 

formed during the QCD phase transtion because of the instanton effects. The inter- 

action between magnetic monopoles and axion domain walls gives rise to peculiar 

phenomena such as the exchange of electric charge between monopoles and walls 

[‘I. 

Independent of the study of axions, there has been recent interest in three dimen- 

sional electrodynamics with a topological mass term [8,9]. In this theory magnetic 

flux induces fractional electric charge, fermion number, and angular momentum 

[IO,I1,12]. Consistent with the Bohm-Aharonov effect, fractional angular momen- 

tum produces anomalous statistics [13]. There have been attempts to find physical 

realizations of this theory in condensed matter [14] and high temperature physics 

1151. 

In this paper I show that axion domain walls interacting with photons and 

fermions exhibit some properties of three dimensional electrodynamics. I extend the 

analysis of a similar model by Sikivie, and Huang and Sikivie [7] to show that it has a 

simple physical interpretation in terms of three dimensional electrodynamics. On an 

axion domain wall the axion-photon interaction term gives rise to a topological mass 

term for the photon. Further, there are electron and positron bound states with only 

one spin direction, resulting in a parity violating mass term for the fermion living 

on the domain wall. Because the model arises from a four dimensional theory, its 

features are similar but not identical to those of three dimensional electrodynamics. 

The theory considered contains an axion field, ~0, interacting with a photon 

field, A,,, and an electron field, 4. This is a simplified version of more realistic 
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axion models [4,7]. The dynamics of the theory is defined by the Lagrange density 

12 = -tF”“Fpy + 
28 

4 
~P”‘FgyFp,, 
32~2 

+&-y“. (a, - ieA,)PC, - m&.iqao~ 

+$Yoa,* - v2m~(l - COSB) (1) 

where e, m, V, and m, are free parameters of the theory. The first and third terms 

in this expression are the standard spinor electrodynamics lagrangian. The second 

and fourth terms are the usual interaction terms between the axion and the photon 

and electron fields. The axion-photon interaction comes from the anomaly of the 

quasisymmetry Upo of Peccei and Quinn [l]. The last two terms are the axion 

lagrangian. The Up, symmetry is broken by the last term. With a real axion 

model in our mind, we will consider the energy scales, including m, and m, much 

less than v. 

The field equations are 

a. [Z - ;eiq = p. (2) 

~x[zi+y-~[~-y=;. (3) 

a.i?==,, (4) 

ax+L-j;, (5) 

iy’D,@ - me’7Be~ = 0 (6) 

vzoB + &n~sinB = 0 (7) 

wherej: = - - e@y”$ is the electric current and, if there are any magnetic monopoles. 

jk is the magnetic current. The photon and electron contributions to the axion field 

equation are negligible. 

In the model, the axion field 0 has many stable vacua, 6’” = Znn, with integer 

n. Thus, there are domain walls as 6’ varies from one vacuum to another vacuum 
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along one spatial direction. I consider a domain wall which lies on the x-y plane. 8 

goes from 0 to 25~ as .z goes from -oo to +oo. It is easy to obtain a domain wall 

solution to Eq.7, 

e(z) = x + 2sin-‘[tanhm.z] (8) 

For this domain wall the energy density per unit area is 8Xvs and the width is of 

order m;‘. 

I begin with the interaction between photons and axions. As FF is a total 

derivative, the photon-axion interaction term in Eq.1 can be rewritten by a partial 

integration. After integration over the e coordinate, the interaction term becomes 

/ 
dz-%F~ = 

47T 
%=bcF,bA 
4 f 

where a, b, and c denote O,l, and 2. Here I assume that the vector field, A,, varies 

slowly over the width of the domain wall. This is the standard topological mass 

term, with the mass equal to 2a in 2+1 dimensional electrodyanamics. Since the 

interaction of photons and axions is produced by the axial anomaly, the topological 

mass term in Eq.9 is not renormalized. (If there are N families of electrons, the 

coefficient of the F@ term is NB instead of 0, with the change of 0 across the 

domain wall= $. Thus the topological mass is still Za.) This quantization of the 

topological mass term, which can be seen to occur even for a nonabelian gauge 

group, is consistent with the Dirac quantization of magnetic charges [7]. These 

phenomena of nonrenomalieation and quantization occur in 2+1 dimensional gauge 

theories for related reasons [16,17,18]. There is no photon bound state on the wall 

[7]. But also there is no free photon with topological mass on the wall in the 2+1 

dimensional sense because the z dependence of B” leads non-zero BZ,Y via Eq.4. 

From Eq.2, the induced charge on the domain wall is 

Q%,tu:eed - / dz3f. 2 = 2~3 
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for a magnetic flux @ through the domain wall. The sign of Qii,&,, is opposite to 

the case of 2+1 dimensional electrodynamics [8,9]. The reason is that 4,E” plays 

the 2fl dimensional charge density. From Eq.3 the induced current on the domain 

wall is 

jf3n+d;ced E J dd x g = -2a2 x 2 

Because the current is perpendicular to the electric field, this is similar to the 

quantum Hall effect [14,19]. The induced charge and current can be summarized as 

the Witten electric current [20], j; = -:&(t?&@‘), which is conserved. 

In the thin wall approximation, on the wall the boundary conditions are 

AB” = AE=‘Y ~0 

AE” = 2&B’, AB%Y = -&&W 
(12) 

The fields by a dyon at Zc with electric and magnetic charge (q,g) can be found by 

the image charge method in Ref.[7]. F rom the fields, I obtain the magnetic flux and 

the field angular momentum, 

a- lW?f 
21+r*z 

&f” = L 8~ if-$g* - g2 * 2wgl 

where the upper and lower sign are for .zc < 0 and cc > 0, respectively. The induced 

charge and angular momentum are fractional. This is not contradictory to the 

known principles, like the charge quantization or the angular momentum quantiza- 

tion. The rotational symmetries along the x and y directions are broken and there 

is no reason for ME to be quantized. This may lead to anomalous statistics [11,13] 

and will not be pursued here. Note that the ususal electric charge quantization of a 

particle without magnetic charge in the presence of a magnetic monopole is a result 

of the angular momentum quantization of the charge and a magnetic monopole. In 
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the similar reason the electric charge of a dyon need not be quantized. If the wall 

has a finite size with the axion string as its boundary, the induced charge comes 

from the string and there is no fractional electric charge or angular momentum in 

the whole system. 

I now consider briefly a magnetic monopole of charge (0,g) passing the domain 

wall from z < 0 to z > 0 [7]. By the magnetic charge quantization condition, 

eg = 2x for the minimal magnetic charge. As it passes the domain wall, it acquires 

electric charge 2og = e by the Witten effect [20]. On the other hand, the total flux 

change is -g by Eq.13. Thus the change in the induced charge on the domain wall 

is --e by Eq.10. This shows the electric charge conservation. Similarly, one can 

show that the angular momentum (14) is conserved because the monopole aquires 

electric charge. 

I turn now to a discussion of the interaction between the electron and the domain 

wall. Consider a classical electron of charge --e < 0 near the domain wall. If the 

electron magnetric moment is in the +.? direction (so the spin is in the -i direction), 

there is a magnetic flux on the wall. The sign of the electric charge induced by this 

magnetic flux will be positive by Eq.10, and so there is an attraction between the 

electron and the wall. With the same spin direction, there is also an attraction 

between the positron and the wall. Thus we expect that there are bound states of 

electrons and positrons with a single spin direction. 

The real interaction between the electron and the wall~is more complicated be- 

cause of the presence of image charges [7]. However, the electromagnetic interaction 

between the wall and the electron is at most of order a2 and can be shown to have 

negligible effect on the bound state energy compared to the direct interaction be- 

tween the axion wall and the electron, unless m, < a%~. For the invisible axion 

model [3], m, < &n. The cosmic background temperature 3K” is larger than the 

axion mass and the electron bound states will be wiped out. 
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I want to see if there are bound states on the domain wall. I natually expect that 

the bound states with the lowest energy are independent of x and y coordinates. 

After changing the variable by $I = e-~7s8-‘“” $0(z), the Dirac equation (6) becomes 

[‘I 

b - my0 + iy”-f& + s=a,*]+o(z) = o (15) 

where SZ = :[7’,7*] is the z-component of the spin matrix. In the Dirac represen- 

tation of 7”s, Eq.15 becomes 

w - m + Faze u,ia, 
(1’3) 

u,id, w + t78 + ?a,* 

where f (2) and g(z) are the first and last two components of GO, respectively. The 

diffential operator commutes with S” = a, @ lzXr = diag(1, -1, 1, -1). Thus, one 

can classify the eigenfunctions of Eq.18 by (A, f), where the first and second denote 

the eigenvalues of the matrix crZ for f(z) and g(z), respectively. 

It can be shown generally that there is no bound state with (+, -) and (-, +) 

eigenvalues. In the thin wall limit, m, > m, a,8 = 2rr6(z), and the equation can 

be solved exactly. For the (+,+) ((-, -) ) case, there is only positron (electron) 

bound state of (S”) = -i. The width of the wave function is of order, m-‘. The 

energy of the bound state is 

IWI = 
?r2 - 4 
-m ,m,>>m 
?rz+4 (I’) 

When m. < m, I use the nonrelativistic approximation. The lowest energy states 

have the same spin structure as before. The width becomes now (mm,)-‘/*. The 

energy eigenvalue in the quadratic approximation of the potential near the bottom 

is 

Iw] = [l - % + (%)3/z]m ,m, < m 



-7- FERMILAB-Pub-861148-T 

As the bound states of electrons and positrons have the single spin direction, they 

are essentially fermions with a parity violating mass in 2+1 dimensional electro- 

dynamics [8,9]. Note that (SE) is negative and coincides with that obtained from 

the magnetic dipole argument before. The effect of the existence of bound states of 

fermions on the interaction between photons and domain walls will be higher order 

in a. 

Reconsider a monopole passing through the domain wall. In some models there 

are degenerate magnetic monopoles with fermion number *t [21]. If the monopole 

has a fermion number minus one half at the beginning, it can create a positron 

bound to the wall, with the monopole fermion number equal to one half, rather 

than acquiring electric charge by the Witten effect. As the dyon excited energy is 

much larger than the electron mass in most models with monopoles, this process 

is energetically more favorable. The angular momentum and electric charge can be 

shown to be conserved. 

Finally, consider the case where the domain wall is bounded by the axion su- 

perconducting string [5,6]. There are chiral zero modes on the string, resulting in 

the chiral anormaly. This means that the current is not conserved at the string. 

Callan and Harvey [22] showed that the photon and string interaction by 8Fk in 

3+1 dimensions or i3kA in 2+1 dimensions leads to current nonconservation which 

will compensate that by the chiral anomaly. Around the QCD phase transition the 

angle width of the wall changes continuously from 2x to 0. Thus, the axion string 

with a domain wall attached provides a unified view for their argument. 

I have shown that a model of the &on domain wall interacting with photons 

and electrons provides an effective theory that looks like 2+1 dimensional electro- 

dynamics. The model combines some fascinating features of the axion physics and 

2+1 dimensional electrodynamics. Even though at present time it appears unlikely 

that an axion domain wall will be observed [22], it provides a good laboratory for 
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field theory. Further details of the relation between axion domain walls and 2fl 

dimensional gauge theories, including the strong and weak interactions, are worth 

considering. 
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